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Abstract

Context Field inventory plots which usually have

small sizes of around 0.25–1 ha can only represent a

sample of the much larger surrounding forest land-

scape. Based on airborne laser scanning (LiDAR) it

has been shown for tropical forests that the bias in the

selection of small field plots may hamper the extrap-

olation of structural forest attributes to larger spatial

scales.

Objectives We conducted a LiDAR study on tropical

montane forest and evaluated the representativeness of

chosen inventory plots with respect to key structural

attributes.

Methods We used six forest inventory and their

surrounding landscape plots on Mount Kilimanjaro in

Tanzania and analyzed the similarities for mean top-

of-canopy height (TCH), aboveground biomass

(AGB), gap fraction, and leaf-area index (LAI). We

also analyzed the similarity in gap-size frequencies for

the landscape plots.

Results Mean biases between inventory and land-

scape plots were large reaching as much as 77% for

gap fraction, 22% for LAI or 15% for AGB. Despite

spatial heterogeneity of the landscape, gap-size fre-

quency distributions were remarkably similar between

the landscape plots.

Conclusions The study indicates that biases in field

studies of forest structure may be strong. Even when

mean values were similar between inventory and

landscape plots, the mostly non-normally distributed

probability densities of the forest variable indicated a

considerable sampling error of the small field plot to

approximate the forest variable in the surrounding

landscape. This poses difficulties for the spatial

extrapolation of forest structural attributes and for

assessing biomass or carbon fluxes at larger regional

scales.

Keywords Biomass � Carbon � Canopy-height

model � LiDAR � Spatial heterogeneity � Tanzania

Introduction

The structure of forest landscapes is often spatially

heterogeneous at various scales due to topographical,

ecological, and biogeochemical effects, man-made

land use or natural disturbances (Hewitt et al. 2007;

Gossner et al. 2013). Especially in tropical montane

forests with steep slopes and regular disturbances such

as landslides or fire, spatial heterogeneity of forest

structure may be quite pronounced (Dislich and Huth

2012; Brown et al. 2013; Punchi-Manage et al. 2013).
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Such spatial variation in habitat structure can have

cascading feedback effects where plant demographics

interact with spatial structure, leading to changes in

tree-size distributions and overall intensified succes-

sional forests dynamics (Hewitt et al. 2007; Getzin

et al. 2008). Consequently, spatial heterogeneity

within forest landscapes does strongly affect the

distribution of canopy openings, aboveground bio-

mass and carbon stocks, important ecophysiological

attributes such as the leaf-area index, but also animal

movement patterns, biodiversity or ecosystem ser-

vices (Asner et al. 2013a; Detto et al. 2015; Busta-

mante et al. 2016; McLean et al. 2016).

The monitoring of forest structure is often based on

terrestrial data obtained from field inventory plots but

such plots have usually only small sizes of around

0.25–1 ha (Getzin et al. 2006; Mascaro et al. 2011;

Asner and Mascaro 2014; Rutten et al. 2015). Their

limited size is attributed to the high efforts being

associated with plot establishment and monitoring

(Fischer et al. 2010; Bustamante et al. 2016). Also, the

size and the particular location of field inventory plots

may depend on accessibility of remote forest areas and

on topographical constraints such as surrounding deep

valleys, riverbeds or swamps. Additionally, the

selected forest plots shall usually represent undis-

turbed stands with trees and relatively closed canopy

but not areas which may have much larger proportions

of disturbance-driven openings. Therefore, especially

in montane tropical forests with undulating or steep-

sloping terrain, the choice of setting up inventory plots

can hardly account for the spatial variability being

inherent to the forest structure of the host landscape

surrounding the small field plots. Consequently, biases

in local plot selection may cause undesired effects

when the goal is to extrapolate terrestrial information

on vegetation structure to larger spatial scales. This

difficulty hampers also the appropriate estimation and

simulation of carbon stocks and fluxes with forest

models for various scenarios of climate change

(Fischer et al. 2015). In order to assess and quantify

the actual bias in the selection of small field inventory

plots, it is necessary to integrate technologies such as

remote sensing for scaling up results in ecology and

conservation (Marvin et al. 2016).

One important tool for acquiring large-scale infor-

mation on forests is light detection and ranging

(LiDAR). Airborne 3D-laser scanning or LiDAR is

capable of accurate monitoring of forest structure in

remote areas which would be otherwise inaccessible

for terrestrial surveys (Asner et al. 2010, 2013a; Boyd

et al. 2013). Hence, LiDAR-based surveys can gather

information at a scale exceeding tens, hundreds or

thousands of times the size of field inventory plots

(Asner and Mascaro 2014). 3D-information from

airborne laser scanning allows nowadays precise

estimates of key structural attributes such as gap

fraction and gap-size distribution (Asner et al. 2013b;

Boyd et al. 2013; Bonnet et al. 2015), top-of-canopy

height (TCH), aboveground biomass (AGB) or carbon

density (Asner et al. 2013a; Asner and Mascaro 2014).

Furthermore, the information from multiple returns of

LiDAR echos can be used to calculate the leaf-area

index (LAI) for a given vertical foliage profile

contained in a volumetric pixel or also called voxel

(Harding et al. 2001; Detto et al. 2015). Similar to

AGB, the LAI is a key variable for regional and global

models of biosphere–atmosphere exchanges of

energy, carbon dioxide or water vapor (Asner et al.

2003).

Once these different structural attributes and eco-

physiological variables have been determined with

LiDAR for a forest region, their mean values and

frequency distributions can be compared to the mean

values obtained from the small field inventory plots

located within the surrounding host landscape. Due to

the presence of spatial heterogeneity, such compar-

isons may reveal strong biases in the selection of local

field plots, as has been recently shown in a study from

Peruvian Amazonia. In this research, Marvin et al.

(2014) found that mean biases in forest canopy

structure and aboveground biomass in both lowland

Amazonian and montane Andean landscapes may

reach as much as 9–98%. The study thus demonstrated

that there was a considerable sampling error of the

location and size of field inventory plots to approx-

imate their surrounding host landscape.

Here, we undertook a related study in wet montane

tropical forest of northern Tanzania to investigate

whether comparable biases do also prevail in equato-

rial East Africa. For this reason, we selected the

UNESCO World Heritage Site, Mount Kilimanjaro,

because this ancient volcano comprises of consider-

able slopes, steep gorges and valleys. Furthermore, the
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six chosen inventory plots and surrounding host

landscape plots between 1800 and 2560 m altitude

are partly affected by past disturbance and land use

(Ensslin et al. 2015), making them ideal to explore the

effects of spatial heterogeneity on forest structure. The

primary goal of this study is to assess the spatial

heterogeneity with respect to selected field plots and

forest variables such as TCH, AGB, gap fraction or

LAI.

Besides spatial heterogeneity and structural dis-

similarity, we also explored the similarities between

the six different host landscapes with respect to

canopy openings. It is assumed that forests are

organized by allometric scaling relationships that

explain how trees use resources and pack their crowns

to fill space (Enquist et al. 2009; Taubert et al. 2015).

Thus, a set of very general scaling rules may explain

why, for example, tropical tree size distributions can

be remarkably consistent despite differences and

spatial heterogeneity in the environments that support

them (Farrior et al. 2016). Nowadays, high-resolution

data based on drone images or LiDAR also enables the

accurate detection of very small gap sizes including

openings of just 1 m2 (Boyd et al. 2013; Getzin et al.

2014). This allows, in particular, detailed analyses of

the poorly understood gap-size frequency distributions

in tropical forests and thus novel insights into gap

dynamics. One of the key questions we are asking in

this context is whether gap-size frequencies are

similarly power-law distributed and consistent across

different forest landscapes as is known from Amazo-

nia (Asner et al. 2013b; Espı́rito-Santo et al. 2014;

Marvin and Asner 2016). Our study will therefore

compare recent results from South American tropical

forests not only with respect to spatial heterogeneity of

forest structure but also in the light of scaling rules that

may potentially govern the distribution of canopy

openings equally across the otherwise heterogeneous

landscape. The following are the main questions of

this study: (1) are the biases between inventory and

landscape plots in montane tropical forest of East

Africa similar to findings from tropical Amazonia, (2)

are the forest variables on Mount Kilimanjaro also

primarily non-normally distributed as in Amazonia,

and (3) are the gap-size frequencies power-law

distributed in different stands with various degrees

of spatial heterogeneity?

Methods

Study sites and inventory plots

The study sites were located at the southern and south-

eastern slopes of Mount Kilimanjaro in Tanzania. Our

six chosen inventory plots (IP) named Flm1, Flm2,

Flm6, FOc1, FOd4, and FOd5 (Ensslin et al. 2015)

were located in the lower and middle montane forests

which are characterized by Ocotea-Agauria or -

Syzygium associations and Ocotea-Podocarpus,

respectively. The climate there is wet tropical with

mean annual precipitation reaching &2700 mm and

mean annual temperature &15.6 �C at 2200 m alti-

tude (Hemp 2006). The IPs Flm1, Flm2, and Flm6

belong to the natural lower montane forests at

1800–2040 m altitude, FOc1 is a natural middle

montane forest at 2120 m altitude, and FOd4 and

FOd5 are anthropogenically affected montane forests

at 2370–2560 m elevation (Ensslin et al. 2015). Except

for the inventory plot FOc1 which has a size of

60 9 43 m2, all other IPs have a size of 50 9 50 m2.

Mapping landscape with airborne LiDAR

Full waveform airborne laser scanning data were

obtained in 2015 with a Riegl LMS Q780. The scanner

has a rotating polygon mirror and scans in parallel

lines. The scan field of view is 60� and the wavelength

of the scanner is near infrared (1064 nm). The wave-

form signal of the laser scanner has been automatically

decomposed by the RIEGL software tool RiANA-

LYZE into components of echos to produce discrete-

return data. With the supplied LASer (LAS) file

format, up to seven returns per pulse were generated

to enable the accurate mapping of all vegetation layers

deep into the understory and to the ground.

The aircraft was an Airbus helicopter (Model: AS

350B3) which flew in separate narrow lines over the

inventory plots on the slopes of Mount Kilimanjaro

(Fig. 1a). As a result, the airborne LiDAR data of the

surrounding host landscape around each IP represents

a stripe-like landscape plot (LP). The shapefiles of the

individual flight paths were analyzed with QGIS 2.12-

software (www.qgis.org) and overlayed with the bor-

ders of the inventory plots. Visual interpretation based

on satellite imagery available in Google Earth was
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employed to select the final borders of the surrounding

landscape plots so as to have a representative host

landscape that generally matches the individual loca-

tion of the IP (see Fig. 1b, c for an example). Notably,

this was an estimation based on canopy structure and

the possibility to identify even individual tree crowns

using these high resolution images from 2014 to 2016.

With this visual approach we were able to apriorily

exclude strongly biasing effects and abrupt changes in

bordering forest structure that may typically occur on

Mount Kilimanjaro resulting from past disturbances

(e.g. fire or logging) or from sudden changes in terrain

structure such as neighboring steep gorges. Hence, the

goal was to select surrounding host landscapes that

were as much as possible representative for the small

inventory plots because we excluded very obvious

changes in forest structure based on information from

satellite imagery (Fig. 1c). The Kilimanjaro landscape

is in itself relatively heterogeneous at scales that

would be otherwise more homogeneous, for example,

in areas of Amazonia. But the objective of this study

was to select uniform subsets of host landscapes and

then to assess the representativeness of the chosen

inventory plots based on LiDAR analysis that enables

a statistical comparison of forest structure and bias far

more precisely and standardized than a mere visual

interpretation of satellite images. The exclusion of

unrepresentative areas from the LiDAR flight paths

resulted in host landscapes of varying sizes (Table S1).

The mean size of all six LPs was 31 ha and thus more

than 120 times larger than the 0.25 ha IPs.

Calculating different metrics from LiDAR

The LiDAR raw data were processed with a combi-

nation of R-software (R Development Core Team

2016) and LAStools-software (Isenburg, http://

lastools.org). At first, we used LASnoise to remove

outlier points and then LASground to determine

ground points and the digital terrain model (DTM).

LASheight was used to height normalize the data

points where all returns represent the true Z-coordi-

nate of aboveground vegetation, irrespective of the

underlying topography. These un-thinned data sets

Fig. 1 Mount Kilimanjaro

features extensive montane

tropical forests on its slopes

(a). A LiDAR-based point

cloud of the forest inventory

plot Flm1 is shown (b). The

same plot is indicated as a

50 9 50 m2 square within

the surrounding 28 hectare

landscape plot (c). The

landscape plot was gridded

to 25 9 25 m2 cells and

forest structural attributes

such as mean top-of-canopy

height within each cell was

calculated (d)
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containing all the points were later employed to cal-

culate the leaf-area index (see below) but for all other

metrics, the point clouds were thinned out to generate

a canopy-height model (CHM). Initially, the CHM

was obtained with LASgrid via a smoothing kernel

and selecting the highest point within a

0.25 9 0.25 m2 grid cell. However, the point density

was finally reduced to the highest LiDAR return

within a 1 9 1 m2 grid cell.

Mean top-of-canopy height (TCH) was calculated

at a resolution of 25 9 25 m2 grid cells (Fig. 1d), a

scale which was e.g. similarly used for this purpose by

Asner et al. (2016). Hence, mean TCH is the average

of all 625 height values within each grid cell, obtained

from the CHM at 1 m2 resolution. For the 50 9 50 m2

inventory plots, we then calculated from that the

overall mean value in the IP. The same was also done

for the much larger landscape area but additionally we

calculated from all 25 9 25 m2 grid cells in the LP the

coefficient of variation (CV), which is a measure for

the spatial heterogeneity of the forest variable (Marvin

et al. 2014). In order to analyze the bias (%D) in the

mean TCH for the inventory plot as compared to the

landscape plot, we calculated the difference between

both estimates as a percentage of the landscape plot

(i.e. [meanIP - meanLP]/meanLP9100). Finally, we

tested whether the frequency distributions from mean

TCH (and see below, also AGB, gap fraction, and

LAI) were normally distributed using the Shapiro–

Wilk normality test at a = 0.05 significance level

(Table 1).

Aboveground biomass (AGB) was derived from

mean TCH for each 25 9 25 m2 grid cell. The goal

here was to get a standardized estimate of the spatial

heterogeneity of standing biomass in the forest

landscape. For this purpose, we applied the formula

provided by Asner and Mascaro (2014, cf. their

Table 2) which is based on plot-aggregate allometry

equations across five tropical countries. Note that we

used here a universal equation rather than a locally

parameterized form, hence our biomass values are

primarily useful for comparative purposes. The results

of this formula AGB = 6.85 9 TCH0.952 were divided

by 0.48 to get biomass and not carbon because

standing biomass consists of approximately 48%

carbon (Martin and Thomas 2011). Again as done

for TCH, the overall mean estimates were compared

between IPs and LPs, the bias was calculated and

normality tests were undertaken.

Gap fraction was calculated for each 25 9 25 m2

grid cell by considering all 1 m2 cells with a vegeta-

tion of less than 10 m height as a gap. Hence, gap

fraction is the number of 1 m2 cells with tree height

Z\ 10 m, divided by the area of a 25 9 25 m2 grid

cell (625 m2). As done above, the mean gap-fraction

values were then compared between IPs and LPs.

Table 1 Comparison of mean values of forest structural attributes for the inventory (IP) and landscape plots (LP)

Plot Mean top-of-canopy

height

LiDAR aboveground

biomass

Gap fraction Leaf-area index

IP

(m)

LP

(m)

CV

in LP

%D
(%)

IP (t/

ha)

LP

(t/ha)

CV

in LP

%D
(%)

IP

(%)

LP

(%)

CV

in LP

%D
(%)

IP

(-)

LP

(-)

CV

in LP

%D
(%)

Flm1 20.8 21.4 17.9 -3.1 256.2 263.7 17.1 -2.8 0.4 5.4 206.1 -93.4 6.1 5.9 26.8 3.4

Flm2 23.2 17.5 33.5 32.4 284.4 217.1 32.3 31.0 3.4 25.0 94.8 -86.4 6.2 4.4 40.9 40.9

Flm6 19.4 16.3 23.7 19.1 239.9 202.9 22.7 18.2 0.9 17.1 106.8 -94.6 5.4 5.0 25.7 8.0

FOc1 26.8 25.2 14.2 6.3 326.7 308.1 13.6 6.0 3.4 3.8 84.4 -9.5 5.3 6.2 14.7 -14.5

FOd4 17.9 16.4 14.8 8.9 222.4 205.0 14.1 8.5 1.0 8.7 116.7 -88.6 9.4 7.2 26.2 30.6

FOd5 21.3 16.7 19.1 27.3 262.5 208.5 18.2 25.9 1.0 9.7 130.0 -90.1 8.8 6.5 27.0 35.4

Average

bias

– – – 16.2 – – – 15.4 – – – 77.1 – – – 22.1

Bold numbers in LP columns indicate that the null hypothesis of the variable being normally distributed was rejected by the Shapiro–

Wilk normality test at alpha = 0.05 significance level. The coefficient of variation (CV), expressed in percentage, quantifies the

spatial heterogeneity in the landscape plot and %D, % is the difference between the IP and LP mean values, expressed as percentage

of the landscape plot. The average bias across all six study plots is given as absolute percentage value
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Leaf-area index (LAI) was also estimated based on

25 9 25 m2 grid cells for IPs and LPs but the un-

thinned CHM raw data with a mean point density of

47/m2 were used for this purpose because the LAI is a

measure which strongly depends on all returns from

the top of the canopy, down to the bottom and the

ground. We followed the approach of Harding et al.

(2001) using a 1 m height interval. This gives at first a

vertical profile of the LiDAR point cloud by returning

a point count per height class. Then, the vertical

foliage profile is derived by determining a height

threshold, hence a value below every LiDAR point is

regarded as ground return, and by specifying the light

extinction coefficient k. For this threshold we used a

value of 5 m. The value of the light extinction

coefficient k was derived by relating it to the

parameters G, the projection coefficient used to adjust

the apparent foliage profile, and C, which is the

clumping index that adjusts the linear relationship

between effective LAI and true LAI. In this, we

followed Tang et al. (2012) and assumed a random

foliage distribution within the canopy and thus a value

of G = 0.5 and a clumping index of C = 1.58. The

light extinction coefficient corresponds then to the

formula k = G/C and thus k = 0.3. The LAI for a

given 25 9 25 m2 grid cell is finally the sum of values

contained in the vertical foliage profile. We verified

that our LiDAR-derived LAI values showed sufficient

agreement with the field measured LAI for the

inventory plots (Rutten et al. 2015). As done for the

other forest structural attributes, the mean LAI values

were compared between IPs and LPs.

Gap-size frequency distributions were derived from

the classification of 1 m2 cells into gap pixels and non-

gap pixels. As for calculating gap fraction above, we

used here primarily a canopy height threshold of

Z\ 10 m for the gap definition. However, to supple-

ment this analysis we also add some information on

data results from gap definitions using a more

restricted height threshold of Z\ 5 m where canopy

openings were considered as gaps only if the vegeta-

tion height was below 5 m. Gap-size distributions

were derived from classifying individual gaps based

on neighborhood properties. This was done using the

‘‘raster package’’ in R-software and the clump()

function which detects and aggregates patches of

connected cells in either four (Rook’s case) or eight

(Queen’s case) directions. We identified adjacent gap

cells at the 1 m grid resolution in four but not eight

directions in order to not overestimate the size of

larger gaps because the primarily used height thresh-

old of Z\ 10 m in this study is already in benefit of

detecting larger gap sizes (Lobo and Dalling 2014).

We plotted the gap distributions as a linear relation-

ship between frequency and size on a log–log scale

and fitted the discrete Pareto distribution (also called

Zeta distribution) to the data, which is a power-law

distribution that is described by its scaling exponent

lambda (k). Large values of k indicate fewer large

gaps because the size-frequency distributions are

steeper. We used the approach of Asner et al.

(2013b) to estimate the parameter lambda based on

maximum likelihood methods.

Table 2 Summary of the gap-size distributions based on a canopy height threshold of Z\ 10 m for the gap definition and the

percentage within individual size classes

Plot Percentage in gap-size class (Z\ 10 m) Lambda

Z\ 10 m

Lambda

Z\ 5 m
1 sqm 2 sqm 3–5 sqm 6–10 sqm 11–20 sqm 21–50 sqm 51–100 sqm [100 sqm

Flm1 47.8 13.2 14.3 8.9 3.7 5.3 3.3 3.3 1.65 1.71

Flm2 51.3 13.0 13.2 5.9 5.8 3.8 2.5 4.3 1.66 1.69

Flm6 50.6 11.5 10.6 7.0 5.0 7.0 4.0 4.4 1.61 1.71

FOc1 49.3 13.5 14.4 7.6 6.2 5.3 2.1 1.6 1.70 2.04

FOd4 50.9 13.1 12.8 7.2 4.8 5.6 2.5 3.1 1.69 1.85

FOd5 49.7 13.2 13.5 7.2 5.2 4.7 3.0 3.4 1.67 1.78

Mean 49.9 12.9 13.1 7.3 5.1 5.3 2.9 3.4

Lambda describes the scaling exponent of the fitted discrete Pareto distributions. Besides showing the lambda values for the used

height threshold of Z\ 10 m, information is added on lambda for a similar analysis (data not shown) based on Z\ 5 m for the gap

definition
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Results

Mean top-of-canopy height (TCH)

The mean top-of-canopy height in the six IPs ranged

from 17.9 to 26.8 m (Table 1). Differences to the

mean values for the surrounding host landscape plots

were considerable with biases reaching as much as

32.4 and 27.3% in Flm2 and FOd5, respectively. Also

the spatial heterogeneity of mean TCH in the LPs,

expressed as coefficient of variation, was large ranging

from 14.2 to 33.5%. Mean TCH was not normally

distributed in the LPs Flm2, Flm6, FOc1 and FOd5,

indicating one reason for the large coefficients of

variation (Fig. 2). However, even when the null

hypothesis of the normal distribution could not be

rejected, such as for FOd4, the difference in the mean

values between IP and LP indicates a considerable

sampling bias of almost 10%.

Aboveground biomass (AGB)

LiDAR-derived AGB in the inventory plots based on

the general formula provided by Asner and Mascaro

(2014) had an average value of 265 t/ha which

sufficiently well approximated the average value of

302 t/ha for field-measured AGB (Ensslin et al. 2015).

Since aboveground biomass was directly derived

from mean TCH, the biases between mean values in

IPs and LPs were very similar (Table 1). The lowest

bias was found for AGB in the landscape plot Flm1,

indicating that the IP was relatively representative for

AGB in the surrounding LP (Fig. 3a). AGB was not

normally distributed in the LPs Flm2, Flm6, FOc1 and

FOd5 (Fig. S1).

Gap fraction

The percentage gap fraction was the structural variable

that showed the highest spatial heterogeneity and

biases (Fig. 3b). The coefficient of variation ranged

between 84.4% in FOc1 to even 206.1% in Flm1 and

average biases between all IPs and LPs reached 77.1%

(Table 1). All biases were negative which means that

the inventory plots were selected in favor of repre-

senting forest samples with rather closed canopies but

not gaps. Gap fraction was not normally distributed in

all the six landscape plots (Fig. S2).

Leaf-area index (LAI)

Our LiDAR-derived LAI values showed sufficient

agreement with the field-measured LAI for the inven-

tory plots (Rutten et al. 2015). For the six chosen IPs

Flm1, Flm2, Flm6, FOc1, FOd4, FOd5 we found that

LiDAR-derived mean LAI values were 6.1, 6.2, 5.4, 5.3,

9.4, 8.8 (Table 1) and field-measured LAI values were

6.1, 6.2, 5.8, 6.9, 7.3, 7.1, respectively. Our LiDAR-

derived LAI values showed also a generally good

agreement with other known values from tropical forests

where maximal LAI values may reach 9–12 (Asner et al.

2003). For the plot Flm1, there was only a small bias in

LAI of 3.4% between IP and LP and thus, the IP

represented the mean in the host landscape relatively

well (Table 1; Fig. 3c). However, this was an exception

and the average bias of the variable was with 22.1% for

all investigated plots higher than for the other two

variables mean TCH and AGB. LAI was not normally

distributed in all the six landscape plots (Fig. S3).

Gap-size frequency distributions

On average, circa 50% of all gap sizes consisted of the

1 m2 size class. The smallest gap sizes of one and 2 m2

dominated the frequency distributions and made up circa

63% of all gaps (Table 2). Together with the size class of

up to 5 m2, these small gaps constituted 75.9%. Large

gaps with[100 m2 made up only 3.4% on average.

These size frequencies showed remarkably similar

power-law distributions across all six landscape plots

despite the presence of considerable spatial heterogene-

ity and large differences in the number of gaps (Fig. 4).

The number of gaps with a height definition ofZ\10 m

ranged between 711 and 1854 but the lambda values of

the scaling exponent varied only slightly and ranged

between 1.61 and 1.70. However, when the canopy

height criterion used to identify gaps was more strict and

Zwas defined as\5 m in an additional analysis (data not

shown), then the lambda values increased and showed

more variation, ranging from 1.69 to 2.04 (Table 2).

Discussion

Biases in field studies of forest structure

The majority of LiDAR-based studies of tropical

forests have so far been undertaken in Central and

Landscape Ecol (2017) 32:1881–1894 1887

123



South America with a focus on, for example, Panama

(Asner et al. 2013a; Lobo and Dalling 2014; Detto

et al. 2015), Costa Rica (Kellner et al. 2009), Ecuador

(Molina et al. 2016) or Peruvian Amazonia (Asner

et al. 2010, 2013b; Boyd et al. 2013). In comparison,

forest structure has been much less investigated with

airborne laser scanning on the African continent (but

see Kent et al. 2015 or Vaglio Laurin et al. 2016 for a

few examples). Here, we aim to provide some

comparisons between these results from neotropical

America and equatorial Africa. Our research on

montane tropical forest in East Africa was inspired

by Marvin et al. (2014) who found for Peruvian

Amazonia that the use of single, small field inventory

Fig. 2 Probability density

distributions are shown for

the structural attribute mean

top-of-canopy height in the

25 9 25 m2 cells of the

landscape plots. Red vertical

lines indicate the mean

height value within the

50 9 50 m2 inventory plot.

Except for FOd4, the

variable was not normally

distributed in the landscape

plots
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plots results in biases when trying to extrapolate the

local results to the surrounding landscape scale with its

substantial spatial heterogeneity. They found that

particularly in the montane Andean landscapes biases

may reach as much as 98%.

Our study from Mount Kilimanjaro in Tanzania

shows generally strong agreement with these findings

from South America. For the key variable mean top-

of-canopy height, there was only the Flm1 inventory

plot that had a bias of less than 5% at the scale of

50 9 50 m2 but even in its surrounding host land-

scape, mean TCH was not normally distributed

(Fig. 2a). Biases in our six plots ranged from –3 to

32% with an overall average of 16%, which strongly

agrees with the range of -5 to 26% and an average of

around 14% found by Marvin et al. (2014) for mean

TCH in Amazonian montane forests. These results

translate directly to the bias for aboveground biomass

which was calculated based on a general formula

provided for tropical forests by Asner and Mascaro

(2014). Consequently, our landscape plots showed

also for AGB, and hence carbon stocks, a strong

spatial heterogeneity as manifested in a coefficient of

variation as high as 32% for AGB in the plot Flm2. It

needs to be stressed that it is not only the inherent

presence of spatial heterogeneity in the landscape plot

that may cause a sampling error by use of small

inventory plots but it is also the non-normal spatial

distribution of the forest structural attribute itself that

occurred in the study sites. This can be well illustrated

based on the natural forest plot FOc1 where mean

TCH was not normally distributed (Fig. 2d; Table 1),

despite that biases in the mean values of mean TCH or

AGB were only around 6%. Thus, even when a mean

value of a structural attribute is relatively similar

between an inventory and landscape plot, a non-

normally distributed probability density of the forest

variable indicates a considerable sampling error of the

small field plot to approximate the forest attribute in

the surrounding host landscape (Marvin et al. 2014).

Fig. 3 Exemplary for the

landscape plot Flm1, the

spatial variation of LiDAR-

derived aboveground

biomass (a), gap fraction

(b), and leaf-area index (c) is

shown
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We suggest that such a bias could not be compensated

for simply by enlarging the field plot or by randomly

sampling several 0.25 ha plots within the host land-

scape but only the larger-scale mapping with methods

such as airborne LiDAR can capture this variability of

forest structural attributes (Mascaro et al. 2011;

Marvin et al. 2016).

One reason for the considerable bias observed for

mean TCH, AGB but also for leaf-area index can be

explained with our results on gap fraction. The biases

on gap fraction were for all six plots very large with an

average of 77%, ranging from around -10 to -95%.

More importantly, the fact that all biases were

negative indicates that the forest inventory plots have

been locally chosen so as to represent quite dense

forest stands with preferably closed canopy cover.

This is justifiable since the overall study project seeks

to investigate mature forest at this elevation on Mount

Fig. 4 Gap-size frequency

distributions based on a

canopy height cut-off of

Z\ 10 m for the gap

definition are shown for the

six landscape plots, together

with the scaling exponent k
of the fitted discrete Pareto

distributions
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Kilimanjaro (Hemp 2006; Ensslin et al. 2015). How-

ever, except for the plot FOc1, the true gap fraction in

the surrounding host landscapes was about 10 to

almost 20 times larger than within the inventory plots.

Also in this case of mapping canopy gap fraction, a

large-scale sampling based on airborne LiDAR is

advantageous over field measurements. Interestingly,

this sampling bias was surprisingly similar for mon-

tane forests in Amazonia were Marvin et al. (2014)

found also only negative biases for gap density with an

average of 64%, ranging from around -17 to -100%.

In our case, spatial heterogeneity and biases of

sampling gap fraction were similar across the land-

scape, irrespective of whether the plots represented

anthropogenically disturbed (FOd4 and FOd5) or

natural forest. It is likely that, despite a preference

for selecting a rather closed forest stand, accessibility

partly played a role in setting up the inventory plots

because e.g. the IP Flm2 borders to the east on a more

open area.

The bias in the gap fraction did also translate into

leaf-area and thus the vertical foliage properties. LAI

mean values for inventory plots were in five out of six

cases higher than in the host landscape and the average

bias was 22%. The large spatial heterogeneity of LAI

ranging between 15 and 41% indicates that localized

LAI measurements in field plots can hardly account for

the spatial variability in the landscape. The use of

airborne LiDAR in assessing LAI has thus two advan-

tages. It not only enables the mapping of LAI at spatial

scales that would be non-feasible based on local ground

measurements but it prevents also the underestimation

of leaf area in the upper canopy that usually goes along

with ground-level measurements (Detto et al. 2015).

Especially for spatially heterogeneous montane forests

where disturbances on slopes and topographic rough-

ness may cause high gap fractions, an airborne mapping

approach is key for better understanding the large-scale

variation of LAI and for up-scaling ecosystem functions

from leaf to stand levels at the landscape scale.

Generally, our results agree with similar LiDAR-based

measurements from lowland tropical forest in Central

America, where spatial variation of LAI was almost as

equally high (Detto et al. 2015).

Gap-size frequency distributions

Gap definitions for forests are highly diverse and

depend on the specific question being under

investigation (Asner et al. 2013b; Espı́rito-Santo

et al. 2014). For example, when the maximum canopy

height threshold used to identify gaps is relaxed from 2

to 10 m, the scaling exponent k of the power-law

distribution decreases linearly (Lobo and Dalling

2014). However, this did not affect this study because

we were primarily interested in asking whether gap-

size distributions show similarities between the land-

scape plots, despite their different elevations and land-

use histories. In this respect, we made two distinct

observations.

Firstly, gap-size frequency distributions were dom-

inated by small gaps, rather than by medium-sized or

large gaps. In the montane forests of Mount Kiliman-

jaro, circa 50% of all gap sizes consisted of the 1 m2

size class and together with the 2 m2 size class they

made up circa 63% of all gaps. Our results strongly

agree with similar findings for Amazonia (Boyd et al.

2013; Marvin and Asner 2016) and we emphasize the

importance of identifying gaps as small as 1 m2 with

modern remote sensing approaches such as airborne

LiDAR or unmanned aerial vehicles (Getzin et al.

2014). The small gap openings may result from

repeated gap formation induced by small-scale distur-

bance (Torimaru et al. 2012). These smallest gaps are

also important determinants of regeneration, since

light heterogeneity in the understory may induce light-

gradient partitioning and affect recruitment processes

(Montgomery and Chazdon 2002).

Secondly, we found a remarkable similarity in gap-

size frequency distributions that may be related to

allometric scaling relationships which describe how

trees use resources and pack their crowns to fill space

(Enquist et al. 2009; Taubert et al. 2015). Despite the

large structural dissimilarity between the six land-

scape plots with gap numbers ranging from 711 to

1854, there was a striking similarity with all plots

having nearly identically around 50% of the gaps in

the 1 m2 size class and around 13% in the 2 m2 size

class (Table 2). Also the scaling exponent k of the

fitted power-law distributions was very consistent

across all six plots and ranged between 1.61 and 1.70

(threshold Z\ 10 m). Only when the canopy height

criterion used to identify gaps was relaxed to Z\ 5 m,

then the lambda values increased and showed more

variation. Generally, a height threshold of Z\ 10 m

enables the inclusion of more gaps and larger gaps

(Boyd et al. 2013). Obviously, this more relaxed

height definition does also homogenize the lambda
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values because it is less sensitive to plot-level

variation in spatial heterogeneity and past disturbance

regimes. Also, a threshold of Z\ 10 m accounts more

reasonably for disturbance dynamics in the canopy

layer and thus for typical gap-phase transitions

because only few disturbance events are causing

openings that extent down to the ground surface

(Kellner et al. 2009; Boyd et al. 2013). Such a gap

definition is then also more appropriate for forest

modeling approaches where the individual-based

dynamics of forest succession can be investigated in

‘‘virtual laboratories’’ (Dislich and Huth 2012; Fischer

et al. 2015; Taubert et al. 2015).

Conclusion

Overall, our results on the gap-size frequency distri-

butions agree with very general scaling rules that may

explain why, for example, tropical tree size distribu-

tions can be remarkably consistent despite differences

in the environments where they grow. Farrior et al.

(2016) recently suggested that after a disturbance, new

individuals in the forest gap grow quickly and overtop

each other and that the 2D-space filling of the growing

crowns of the tallest individuals relegates a group of

weaker individuals to the understory. Those weak

individuals left in the understory would then be forced

to follow a power-law size distribution where the

scaling rule depends only on the crown area–to–

diameter allometry exponent. Such scaling rules

suggest also that competition for light does not play

a direct role in shaping tree diameter distributions

(Taubert et al. 2015). The above mentioned principles

are indeed supported by empirical findings from

tropical forest in Africa which show that it is not the

competition within height classes that regulates the

2D-tree spacing but it is the size dominance of superior

individuals that overtop their weaker neighbors once

they have exceeded a critical height threshold (Getzin

et al. 2011).

However, before we can model and theoretically

back up such scaling rules with empirical data, we

need to ensure that the model is well parameterized

and calibrated to the plot-level data. We have demon-

strated in this study that there is strong need to bridge

the gap between available data based on local forest

inventories and the necessity for up-scaling such

empirical data to the larger landscape scale in order to,

for example, simulate forest succession, energy fluxes

or the large-scale distribution of biomass and carbon

(Fischer et al. 2015). As was shown here, the spatial

extrapolation of forest structural attributes may be

hampered by strong biases and by non-normally

distributed forest variables because both factors man-

ifest a considerable sampling error of the small field

plot with respect to the surrounding host landscape.

We conclude that these problems can be overcome

with modern remote-sensing tools such as airborne

LiDAR or unmanned aerial vehicles (Marvin et al.

2016), both of which are able to account for the full

spatial heterogeneity being inherent to forest structure

at the landscape scale.
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